Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Adv Healthc Mater ; : e2400513, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38723248

RESUMO

Hydrogels have emerged as promising candidates for biomedical applications, especially in the field of antibacterial therapeutics, due to their unique structural properties, highly tunable physicochemical properties, and excellent biocompatibility. The integration of stimuli-responsive functions into antibacterial hydrogels holds the potential to enhance their antibacterial properties and therapeutic efficacy, dynamically responding to different external or internal stimuli, such as pH, temperature, enzymes, and light. Therefore, this review describes the applications of hydrogel dressings responsive to different stimuli in antibacterial therapy. The collaborative interaction between stimuli-responsive hydrogels and antibacterial materials was discussed. This synergistic approach, in contrast to conventional antibacterial materials, not only amplifies the antibacterial effect but also alleviates adverse side effects and diminishes the incidence of multiple infections and drug resistance. The review provides a comprehensive overview of the current challenges and outlines future research directions for stimuli-responsive antibacterial hydrogels. It underscores the imperative for ongoing interdisciplinary research aimed at unraveling the mechanisms of wound healing. This understanding is crucial for optimizing the design and implementation of stimuli-responsive antibacterial hydrogels. Ultimately, this review aims to offer scientific guidance for the development and practical clinical application of stimuli-responsive antibacterial hydrogel dressings. This article is protected by copyright. All rights reserved.

2.
Nanoscale ; 16(13): 6507-6515, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38466175

RESUMO

Recently, metal-halide perovskites have rapidly emerged as efficient light emitters with near-unity quantum yield and size-dependent optical and electronic properties, which have attracted considerable attention from researchers. However, the ultrafast nucleation rate of ionic perovskite counterparts severely limits the in-depth exploration of the growth mechanism of colloidal nanocrystals (NCs). Herein, we used an inorganic ligand nitrosonium tetrafluoroborate (NOBF4) to trigger a slow post-synthesis transformation process, converting non-luminescent Cs4PbBr6 NCs into bright green luminescent CsPbBr3 NCs to elucidate the concrete transformation mechanism via four stages: (i) the dissociation of pristine NCs, (ii) the formation of Pb-Br intermediates, (iii) low-dimensional nanoplatelets (NPLs) and (iv) cubic CsPbBr3 NCs, corresponding to the blue-to-green emission process. The desorption and reorganization of organic ligands induced by NO+ and the involvement of BF4- in the ligand exchange process played pivotal roles in this dissolution-recrystallization of NCs. Moreover, controlled shape evolution from anisotropic NPLs to NCs was investigated through variations in the amount of NOBF4. This further validates that additives exert a decisive role in the symmetry and growth of nanostructured perovskite crystals during phase transition based on the ligand-exchange mechanism. This finding serves as a source of inspiration for the synthesis of highly luminescent CsPbBr3 NCs, providing valuable insights into the chemical mechanism in post-synthesis transformation.

3.
Viruses ; 16(3)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38543719

RESUMO

H4 avian influenza viruses (AIVs) have been widely detected in live poultry markets in China. However, the potential public health impact of H4 AIVs remains largely uncertain. Here, we fully analyzed the distribution and phylogenetic relationship of H4 AIVs in China. We obtained 31 isolates of H4 viruses in China during 2009-2022 through surveillance in poultry-associated environments, such as live poultry markets and poultry farms. Genomic sequence analysis together with publicly available data revealed that frequent reassortment and introduction of H4 AIV from wild birds to poultry may have occurred. We identified 62 genotypes among 127 whole genome sequences of H4 viruses in China, indicating that H4 AIVs had great genetic diversity in China. We also investigated molecular markers and found that drug resistance mutations frequently occurred in the M2 protein and a few mutations related to receptor binding and the host signature in H4 AIVs. Our study demonstrates the cross-species transmission potential of H4 AIVs in China and provides some reference significance for its risk assessment.


Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Filogenia , Genoma Viral , Vírus da Influenza A/genética , Evolução Biológica , Aves Domésticas , China/epidemiologia
4.
Viruses ; 16(3)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38543762

RESUMO

Wild birds are a natural reservoir for zoonotic viruses. To clarify the role of migratory birds in viruses spread in Poyang Lake, we investigated the microbiome of 250 wild bird samples from 19 species in seven orders. The bacterial and viral content abundance and diversity were preliminarily evaluated by Kraken2 and Bracken. After de novo assembly by Megahit and Vamb, viral contigs were identified by CheckV. The reads remapped to viral contigs were quantified using Bowtie2. The bacterial microbiome composition of the samples covers 1526 genera belonging to 175 bacterial orders, while the composition of viruses covers 214 species belonging to 22 viral families. Several taxonomic biomarkers associated with avian carnivory, oral sampling, and raptor migration were identified. Additionally, 17 complete viral genomes belonging to Astroviridae, Caliciviridae, Dicistroviridae, Picornaviridae, and Tombusviridae were characterized, and their phylogenetic relationships were analyzed. This pioneering metagenomic study of migratory birds in Poyang Lake, China illuminates the diverse microbial landscape within these birds. It identifies potential pathogens, and uncovers taxonomic biomarkers relevant to varied bird habitats, feeding habits, ecological classifications, and sample types, underscoring the public health risks associated with wintering migratory birds.


Assuntos
Lagos , Microbiota , Humanos , Animais , Filogenia , Aves , Animais Selvagens , Biomarcadores , China
5.
Infect Med (Beijing) ; 3(1): 100090, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38444745

RESUMO

Background: Since the first human infection with H9N2 virus was reported in 1998, the number of cases of H9N2 infection has exceeded one hundred by 2021. However, there is no systematic description of the biological characteristics of H9N2 viruses isolated from humans. Methods: Therefore, this study analyzed the pathogenicity in mice of all available H9N2 viruses isolated from human cases in China from 2013 to 2021. Results: Although most of the H9N2 viruses analyzed showed low or no pathogenicity in mice, the leucine to glutamine substitution at residue 226 (L226Q) in the hemagglutinin (HA) protein rapidly emerged during the adaptation of H9N2 viruses, and was responsible for severe infections and even fatalities. HA amino acid 226Q conferred a remarkable competitive advantage on H9N2 viruses in mice relative to viruses containing 226L, increasing their virulence, infectivity, and replication. Conclusion: Thus, our study demonstrates that the adaptive substitution HA L226Q rapidly acquired by H9N2 viruses during the course of infection in mice contributed to their high pathogenicity.

6.
Chem Commun (Camb) ; 60(17): 2377-2380, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38321956

RESUMO

An advanced nanoplatform was developed by integrating catalytic hairpin assembly (CHA) with glutathione-responsive nanocarriers, enabling superior imaging of dual cancer-related miRNAs. Two distinct CHA circuits for the sensing of miRNA-21 and miRNA-155 were functionalized on biodegraded MnO2. In the presence of GSH and the corresponding miRNAs, the degraded MnO2 released the DNA cargos, activating the CHA circuits and recovering the fluorescence. This approach offers a reliable sensing performance with highly selective cell-identification capacity, positioning it as a pivotal tool for imaging multiple biomarkers in living cells.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , MicroRNAs , MicroRNAs/genética , Compostos de Manganês , Técnicas Biossensoriais/métodos , Óxidos , DNA
7.
Int J Psychophysiol ; 195: 112265, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981033

RESUMO

Multitasking with two or more media and devices has become increasingly common in our daily lives. The impact of chronic media multitasking on our cognitive abilities has received extensive concern. Converging studies have shown that heavy media multitaskers (HMM) have a greater demand for sensation seeking and are more easily distracted by task-irrelevant information than light media multitaskers (LMM). In this study, we analyzed the electroencephalogram data recorded during resting-state periods to investigate whether HMM and LMM differ with regard to basic resting network activation. Microstate analysis revealed that the activation of the attention network is weakened while the activation of the salience network is enhanced in HMM compared to LMM. This suggests that HMM's attention control is more likely to be guided by surrounding stimuli, which indirectly supports the deficit-producing hypothesis. Moreover, our results revealed that HMM had an enhanced visual network and may feel less comfortable than LMM during resting-state periods with eyes closed, supporting the view that HMM require more sensation seeking than LMM. Taken together, these results indicate that chronic media multitasking leads to HMM allocating attention in a bottom-up or stimulus-driven manner, while LMM deploy a top-down approach.


Assuntos
Cognição , Emoções , Humanos , Cognição/fisiologia , Eletroencefalografia , Olho , Encéfalo
8.
ACS Appl Mater Interfaces ; 15(50): 58166-58180, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38079631

RESUMO

Calcium phosphate-based biomineralized biomaterials have broad application prospects. However, the immune response and foreign body reactions elicited by biomineralized materials have drawn substantial attention recently, contrary to the immune microenvironment optimization concept. Therefore, it is important to clarify the immunomodulation properties of biomineralized materials. Herein, we prepared the biomineralized collagen matrix (BCM) and screened the key immunomodulation factor carboxymethyl chitosan/amorphous calcium phosphate (CMC/ACP) nanocomplex. The immunomodulation effect of the BCM was investigated in vitro and in vivo. The BCM triggered evident inflammatory responses and cascade foreign body reactions by releasing the CMC/ACP nanocomplex, which activated the potential TLR4-MAPK/NF-κB pathway, compromising the collagen matrix biocompatibility. By contrast, blocking the CMC/ACP nanocomplex release via the blood assimilation process of the BCM mitigated the inflammation and foreign body reactions, enhancing biocompatibility. Hence, the immunomodulation of the BCM was orchestrated by the balance between the CMC/ACP nanocomplex and the blood assimilation process. Controlling the release of the CMC/ACP nanocomplex to accord the biological effects of ACP with the temporal regenerative demands is key to developing advanced biomineralized materials.


Assuntos
Colágeno , Corpos Estranhos , Humanos , Materiais Biocompatíveis/farmacologia , NF-kappa B , Imunidade , Fosfatos de Cálcio
9.
Front Public Health ; 11: 1255969, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155898

RESUMO

Introduction: The continued emergence of human infections of H9N2 avian influenza virus (AIV) poses a serious threat to public health. The prevalent Y280/G9 lineage of H9N2 AIV in Chinese poultry can directly bind to human receptors, increasing the risk of spillover infections to humans. Since 2013, the number of human cases of H9N2 avian influenza has been increasing continuously, and in 2021, China reported the highest number of human cases, at 25. Methods: In this study, we analyzed the age, geographic, temporal, and sex distributions of humans with H9N2 avian influenza in 2021 using data from the National Influenza Center (Beijing, China). We also conducted evolutionary, gene homology, and molecular characterization analyses of the H9N2 AIVs infecting humans. Results: Our findings show that children under the age of 12 accounted for 80% of human cases in 2021, and females were more frequently affected than males. More cases occurred in winter than in summer, and most cases were concentrated in southern China. Human-infecting H9N2 viruses showed a high level of genetic homology and belonged to the prevalent G57 genotype. Several additional α2,6-SA-binding sites and sites of mammalian adaptation were also identified in the genomes of human-infecting H9N2 viruses. Discussion: Therefore, continuous monitoring of H9N2 AIV and the implementation of further measures to control the H9N2 virus in poultry are essential to reduce the interspecies transmission of the virus.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Influenza Humana , Animais , Masculino , Feminino , Criança , Humanos , Influenza Aviária/epidemiologia , Vírus da Influenza A Subtipo H9N2/genética , Influenza Humana/epidemiologia , Aves Domésticas , China/epidemiologia , Mamíferos
10.
Molecules ; 28(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38138479

RESUMO

Liver disease accounts for millions of deaths per year all over the world due to complications from cirrhosis and liver injury. In this study, a novel compound, dimethyl bisphenolate (DMB), was synthesized to investigate its role in ameliorating carbon tetrachloride (CCl4)-induced liver injury through the regulation of oxidative stress-related genes. The structure of DMB was confirmed based on its hydrogen spectrum and mass spectrometry. DMB significantly reduced the high levels of ALT, AST, DBIL, TBIL, ALP, and LDH in a dose-dependent manner in the sera of CCl4-treated rats. The protective effects of DMB on biochemical indicators were similar to those of silymarin. The ROS fluorescence intensity increased in CCl4-treated cells but significantly weakened in DMB-treated cells compared with the controls. DMB significantly increased the content of oxidative stress-related GSH, Nrf2, and GCLC dose-dependently but reduced MDA levels in CCl4-treated cells or the liver tissues of CCl4-treated rats. Moreover, DMB treatment decreased the expression levels of P53 and Bax but increased those of Bcl2. In summary, DMB demonstrated protective effects on CCl4-induced liver injury by regulating oxidative stress-related genes.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Ratos , Animais , Tetracloreto de Carbono/toxicidade , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Estresse Oxidativo , Fígado , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
11.
Inorg Chem ; 62(42): 17352-17361, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37803525

RESUMO

In recent years, there has been a growing demand for luminescence anticounterfeiting materials that possess the properties of environmentally friendly, single-component, and multimode fluorescence. Among the materials explored, the low dimensional metal halides have gained wide attention because of unique characteristics including low toxicity, simple synthesis, good stability, and so on. Here, we synthesized Mn2+ and Sb3+ codoped Cs2ZnCl4 single crystals by a facile hydrothermal method. Under 365 nm excitation, the codoped compound exhibits dual-band emissions at 530 and 730 nm. However, under 316 nm excitation, the compound only shows one emission band from 500 to 850 nm peaking at 730 nm, while under 460 nm excitation, the emission from 500 to 650 nm with an emission peak at 530 nm can be observed. Based on the study of the photoluminescence mechanism, the green and red emissions originate from the Mn2+ located in the tetrahedron and self-trapped exciton emission of [SbCl4]- clusters, respectively. Due to the zero-dimensional structure of the Cs2ZnCl4 host, there is minimal energy transfer between these dopants. Consequently, the luminous ratios of the two emissions can be independently regulated. Except by tuning the dopant concentrations, the Cs2ZnCl4:Mn2+, Sb3+ demonstrates excitation-wavelength-dependent properties, which could emit more than two colors with the change of excitation wavelength. As a result, multimode anticounterfeiting based on Cs2ZnCl4:Mn2+, Sb3+ crystals has been designed, which aligns with the requirements of environmentally friendly, single-component, and multimode fluorescence properties.

12.
Anal Chim Acta ; 1279: 341763, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37827664

RESUMO

In a qualitative analysis of near-infrared spectroscopy (NIRS), when the samples to be analyzed are difficult to obtain or there are few counterexamples, the robustness of the models is poor, resulting in the decline of the generalization ability of the models. In this case, the effective method is to construct virtual samples to achieve the balance of categories. In this contribution, three virtual spectrum construction strategies including Synthetic Minority Oversampling Technique (SMOTE), Adaptive Synthetic Sampling (ADASYN), and Deep Convolutional Generative Adversarial Network (DCGAN) were explored to deal with the problem of insufficient or imbalanced sample numbers in NIRS analysis. The strategies were tested with the melamine and Yali pears two spectral datasets. The PLS-DA and Correct Recognition Rate (CRR) were used for discriminant model construction and accuracy evaluation, respectively. The results show that SMOTE, ADASYN, and DCGAN processing strategies can all improve the global CRR (CRRglob). The SMOTE and ADASYN can improve the CRR for majority class sample (CRRmaj), but the CRR for minority class sample (CRRmin) has decreased. For the DCGAN method, the CRRglob, CRRmaj, and CRRmin were all improved. The standard deviation of the results of the multiple parallel calculations demonstrates the robustness of DCGAN generation method. Therefore, the DCGAN method has good reliability and practicability, and can increase the robustness and generalization ability of the NIRS model.

13.
Adv Mater ; 35(48): e2307198, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37821358

RESUMO

Synthesizing monodisperse afterglow microparticles (MPs) is crucial for creating photonic crystal (PC) platforms with multiple optical states for optoelectronics. However, achieving high uniformity in both size and morphology is challenging for inorganic afterglow MPs using conventional methods. In this contribution, a novel approach for the synthesis of carbon dot (CD)-doped SiO2 MPs with tunable afterglow properties and size distributions is reported. These mechanism studies suggest that the pseudomorphic transformation of SiO2 MPs enables CD doping, providing a hydrogen bond-enriched environment for triplet state stabilization, which generates green afterglow while retaining the uniformity in size and morphology of the parent SiO2 MPs. Furthermore, the utility of CD-doped SiO2 MPs in the fabrication of rationally designed PC patterns is shown using a combined consecutive dip-coating and laser-assisted etching strategy. The pattern displays multiple optical responses under different lighting conditions, including angle-dependent structural colors and blue luminescence under daylight and upon 365-nm irradiation, respectively, as well as time-dependent green afterglow after ceasing UV excitation. The findings pave the way for further controlling the dynamics of spontaneous emissions by PCs to enable complicated optical states for advanced photonics.

14.
Biomed Mater ; 18(5)2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37604162

RESUMO

As one of the key factors influencing the outcome of guided bone regeneration, the currently used xenografts possess insufficient capability in osteogenesis. With the aim of improving the osteogenic performance of xenografts, porcine bone-derived hydroxyapatite (PHA) was prepared and subsequently coated by magnesium-doped nano hydroxyapatite (nMgHA, 10%, 20%, and 30% of Mg/Ca + Mg) through a straightforward and cost-efficient approach. The physiochemical and biological properties of nMgHA/PHAs were examinedin vitroandin vivo. The inherent three-dimensional (3D) porous framework with the average pore size of 300 µm was well preserved in nMgHA/PHAs. Meanwhile, excess magnesium released from the so-called 'surface pool' of PHA was verified. In contrast, slower release of magnesium at lower concentrations was detected for nMgHA/PHAs. Significantly more newly-formed bone and microvessels were observed in 20%nMgHA/PHA than the other specimens. With the limitations of the present study, it could be concluded that PHA coated by 20%nMgHA may have the optimized osteogenic performance due to the elimination of the excess magnesium from the 'surface pool', the preservation of the inherent 3D porous framework with the favorable pore size, and the release of magnesium at an appropriate concentration that possessed osteoimmunomodulatory effects on macrophages.


Assuntos
Magnésio , Osteogênese , Humanos , Suínos , Animais , Xenoenxertos , Regeneração Óssea , Durapatita
15.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569360

RESUMO

Mangoes (Mangifera indica L.) are an important kind of perennial fruit tree, but their biochemical testing method and transformation technology were insufficient and had not been rigorously explored. The protoplast technology is an excellent method for creating a rapid and effective tool for transient expression and transformation assays, particularly in plants that lack an Agrobacterium-mediated plant transformation system. This study optimized the conditions of the protoplast isolation and transformation system, which can provide a lot of help in the gene expression regulation study of mango. The most beneficial protoplast isolation conditions were 150 mg/mL of cellulase R-10 and 180 mg/mL of macerozyme R-10 in the digestion solution at pH 5.6 and 12 h of digestion time. The 0.16 M and 0.08 M mannitol in wash solution (WI) and suspension for counting (MMG), respectively, were optimal for the protoplast isolation yield. The isolated leaf protoplasts (~5.4 × 105 cells/10 mL) were transfected for 30 min mediated by 40% calcium-chloride-based polyethylene glycol (PEG)-4000-CaCl2, from which 84.38% of the protoplasts were transformed. About 0.08 M and 0.12 M of mannitol concentration in MMG and transfection solutions, respectively, were optimal for protoplast viability. Under the florescence signal, GFP was seen in the transformed protoplasts. This showed that the target gene was successfully induced into the protoplast and that it can be transcribed and translated. Experimental results in this paper show that our high-efficiency protoplast isolation and PEG-mediated transformation protocols can provide excellent new methods for creating a rapid and effective tool for the molecular mechanism study of mangoes.


Assuntos
Mangifera , Mangifera/genética , Protoplastos/metabolismo , Folhas de Planta/genética , Transfecção
16.
Nanoscale ; 15(32): 13289-13296, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37503884

RESUMO

Despite the current progress in optimizing and tailoring the performance of nanozymes through structural and synthetic adaptation, there is still a lack of dynamic modulation approaches to alter their catalytic activity. Here, we demonstrate that DNA can act as an auxiliary regulator via a straightforward incubation method with Fe-N-C single-atom nanozymes (SAzymes), causing a leap in the enzyme-like activity of Fe-N-C from moderate to a higher level. The DNA-assisted enhancement is attributed to the increased substrate affinity of Fe-N-C nanozymes through electrostatic attraction between the substrate and DNA. Based on the prepared DNA/Fe-N-C system, colorimetric sensors for dopamine (DA) detection were constructed. Surprisingly, the incorporation of DNA not only enabled the detection of DA in a low concentration range, but also greatly improved the sensitivity with a 436-fold decrease in detection limit. The quantitative determination of DA was achieved in two-segment linear ranges of 0.01-4 µM and 5-100 µM with an ultralow detection limit of 9.56 nM. The DNA/Fe-N-C system shows superior performance compared to the original Fe-N-C system, making it an ideal choice for nanozyme-based biosensors. This simple design approach has paved the way for enhancing nanozyme activity and is expected to serve as a general strategy for optimizing biosensor performance.


Assuntos
DNA , Dopamina , DNA/química , Colorimetria/métodos
17.
Biol Proced Online ; 25(1): 21, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488517

RESUMO

BACKGROUND: Clinical studies suggest that immune checkpoint inhibitor (ICI) monotherapy has limited benefits in non-small cell lung cancer (NSCLC) patients after epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) failure. However, data about efficacy of ICI plus chemotherapy remain controversial, probably attributed to the heterogeneity among such population, and robust efficacy biomarkers are urgent to explore. METHODS: A total of 60 eligible patients who received ICI plus chemotherapy after EGFR-TKI treatment failure were enrolled, 24 of whom peripheral blood mononuclear cell (PBMC) samples were collected at baseline and after 2 cycles of treatment. We have designed a 23-color-antibody panel to detect PBMC by full spectrum flow cytometry. RESULTS: For EGFR-TKI resistant NSCLC patients: 1) ICI plus chemotherapy achieved an objective response rate (ORR) of 21.7% and a median progression-free survival (PFS) of 6.4 months. 2) clinical characteristics associated with worse efficacy included liver metastasis and platelet-to-lymphocyte ratio (PLR) > 200. 3) the proportion of immune cell subset associated with better efficacy was higher baseline effective CD4+T cells (E4). 4) the baseline expression of immune checkpoint proteins (ICPs) on cell subsets associated with better efficacy included: higher expression of CD25 on dendritic cells (DC) and central memory CD8+T cells (CM8), and higher expression of Lymphocyte activation gene 3 (LAG-3) on effective memory CD8+T cells (EM8). 5) the expression of ICPs after 2 cycles of treatment associated with better efficacy included: higher expression of CD25 on CD8+T/EM8 /natural killer (NK) cells. 6) the dynamic changes of ICPs expression associated with worse efficacy included: significantly decrease of T cell immunoglobulin and ITIM domain (TIGIT) expression on regular T cells (Tregs) and decrease of V-domain immunoglobulin suppressor of T cell activation (VISTA) expression on Th1. 7) a prediction model for the efficacy of ICI plus chemotherapy was successfully constructed with a sensitivity of 62.5%, specificity of 100%, and area under curve (AUC) = 0.817. CONCLUSIONS: Some EGFR-TKI-resistant NSCLC patients could indeed benefit from ICI plus chemotherapy, but most patients are primary resistant to immunotherapy. Comprehensive analysis of peripheral immune cells using full spectrum flow cytometry showed that compared to the proportion of cell subsets, the expression type and level of ICPs on immune cells, especially CD25, were significantly correlated with the efficacy of immunotherapy.

18.
Biosens Bioelectron ; 237: 115530, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37478507

RESUMO

The conductivity and emission efficiency of metal-organic frameworks (MOFs) remain challenging factors that limit their electrogenerated chemiluminescence (ECL) sensing applications. Herein, we report a facile approach to address these challenges by integrating an electroactive linker (H2-TCPP) with an ECL active electrogenerated chemiluminescence linker (H4-TBAPy) to construct a highly photoelectrochemical active mixed-linker MOFs (ML-MOFs). ECL results revealed a remarkable 15.4-fold enhancement for the top-performing ML-MOFs (M6-MOFs), surpassing the single linker MOFs. In addition, M6-MOFs also exhibit a remarkable 73-fold enhancement in ECL efficiency compared to commercial Ru (bpy)32+. This improvement should be attributed to the synergistic effects resulting from the combination of two linkers. Furthermore, M6-MOFs are found to be served as a model ECLphore for sensitive and selective detection of α-glucosidase for the first time with good potential practicability in human serum samples. This work represents a promising direction to guide for designing good conductivity and high ECL efficiency MOFs in terms of linker functionalization and thus bandgap modulation for advancing their ECL sensing applications.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Humanos , alfa-Glucosidases , Luminescência , Medições Luminescentes/métodos
19.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298190

RESUMO

Ananas comosus var. bracteatus (Ac. bracteatus) is a typical leaf-chimeric ornamental plant. The chimeric leaves are composed of central green photosynthetic tissue (GT) and marginal albino tissue (AT). The mosaic existence of GT and AT makes the chimeric leaves an ideal material for the study of the synergistic mechanism of photosynthesis and antioxidant metabolism. The daily changes in net photosynthetic rate (NPR) and stomatal conductance (SCT) of the leaves indicated the typical crassulacean acid metabolism (CAM) characteristic of Ac. bracteatus. Both the GT and AT of chimeric leaves fixed CO2 during the night and released CO2 from malic acid for photosynthesis during the daytime. The malic acid content and NADPH-ME activity of the AT during the night was significantly higher than that of GT, which suggests that the AT may work as a CO2 pool to store CO2 during the night and supply CO2 for photosynthesis in the GT during the daytime. Furthermore, the soluble sugar content (SSC) in the AT was significantly lower than that of GT, while the starch content (SC) of the AT was apparently higher than that of GT, indicating that AT was inefficient in photosynthesis but may function as a photosynthate sink to help the GT maintain high photosynthesis activity. Additionally, the AT maintained peroxide balance by enhancing the non-enzymatic antioxidant system and antioxidant enzyme system to avoid antioxidant damage. The enzyme activities of reductive ascorbic acid (AsA) and the glutathione (GSH) cycle (except DHAR) and superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were enhanced, apparently to make the AT grow normally. This study indicates that, although the AT of the chimeric leaves was inefficient at photosynthesis because of the lack of chlorophyll, it can cooperate with the GT by working as a CO2 supplier and photosynthate store to enhance the photosynthetic ability of GT to help chimeric plants grow well. Additionally, the AT can avoid peroxide damage caused by the lack of chlorophyll by enhancing the activity of the antioxidant system. The AT plays an active role in the normal growth of the chimeric leaves.


Assuntos
Ananas , Antioxidantes , Antioxidantes/metabolismo , Ananas/metabolismo , Dióxido de Carbono/metabolismo , Fotossíntese , Clorofila/metabolismo , Glutationa/metabolismo , Peróxidos/metabolismo , Folhas de Planta/metabolismo
20.
Light Sci Appl ; 12(1): 155, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37357223

RESUMO

The advancement of contemporary X-ray imaging heavily depends on discovering scintillators that possess high sensitivity, robust stability, low toxicity, and a uniform size distribution. Despite significant progress in this field, the discovery of a material that satisfies all of these criteria remains a challenge. In this study, we report the synthesis of monodisperse copper(I)-iodide cluster microcubes as a new class of X-ray scintillators. The as-prepared microcubes exhibit remarkable sensitivity to X-rays and exceptional stability under moisture and X-ray exposure. The uniform size distribution and high scintillation performance of the copper(I)-iodide cluster microcubes make them suitable for the fabrication of large-area, flexible scintillating films for X-ray imaging applications in both static and dynamic settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA